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Identification of Discrete Hammerstein Systems Using
Kernel Regression Estimate

W LODZIMIERZ GREBLICKI AND MIROS LAW PAWLAK

Abstract— In this note a discrete-time Hammerstein system is

identified. The weighting function of the dynamical subsystem is

recovered by the correlation method. The main results concern

estimation of the nonlinear memoryless subsystem. No condi-

tions concerning functional form of the transform characteristic

of the subsystem are made and an algorithm for estimation of

the characteristic is presented. The algorithm is a nonparamet-

ric kernel estimate of regression functions calculated from de-

pendent data. It is shown that the algorithm converges to the

characteristic as the number of observations tends to infinity.

For sufficiently smooth characteristics, the rate of convergenve is

O(n−2/5) in probability.

I. Introduction

Various approaches which have been proposed for identifica-
tion of nonlinear systems largely depend on the prior knowledge
about the system, i.e., about its mathematical representation.
The Volterra series and Wiener expansion [17] are quite general
nonlinear representations.

Another approach is based on the assumption that the struc-
ture of the system is known. Some authors consider cascade
systems described by the Hammerstein functional

y(t) =

∫ t

−∞
k(t− τ)ϕ(u(τ))dτ.

Such a system consists of a nonlinear memoryless element
with a transform characteristic ϕ followed by a linear dynamical
subsystem having the weighting function k. The idea of using
the Hammerstein representation stems originally from Naren-
dra and Gallman [14] and was developed by Chang and Luus
[3], Thatachar and Ramaswamy [18], Haist, Chang and Luus
[10], Gallman [6], [7], as well as Billings and Fakhouri [2]. All
these authors presented algorithms for identification of both the
subsystems, but without rigorous convergence proofs, and all of
them imposed on the nonlinear element a very restrictive con-
dition that ϕ is not only continuous, but also has a polynomial
form, i.e.,

ϕ(u) = c1u+ c2u
2 + · · ·+ cMu

M ,

where c1, · · · , cM are unknown parameters but M is a fixed and
known constant. They estimate the weighting function or coef-
ficients of the transfer functions of the linear subsystem and co-
efficients c1, · · · , cM describing the nonlinear subsystem. More-
over, if ϕ is not a polynomial, their algorithms do not converge
to ϕ(u), [6]. Algorithms for identification of the nonlinear and
linear subsystems are not, however, mutually independent and
the subsystems cannot be identified separately.

In this note a discrete-time system shown in Fig. 1 is identi-
fied. The first subsystem is memoryless and nonlinear and has a
transform characteristic ϕ. Its output is disturbed by a random
noise ξn. The second subsystem is linear and has an impulse
response {kn} and its output depends on additive random noise
ηn. We assume throughout this note that ξn’s and ηn’s are in-
dependent, identically distributed, zero mean random variables
with finite variance and are independent of Ui’s and Wi’s, i ≤ n,
respectively. The signal Wn interconnecting the subsystems is
not accessible for measurement and ϕ as well as {kn} are esti-
mated from input-output observations of the whole system. For
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this reason both ϕ and {kn} can be estimated generally only
up to some constant multiplicative factors. Assuming that the
whole system is driven by white noise, we estimate the weight-
ing function of the linear subsystem by the standard correlation
method. The main result of this note concerns, however, iden-
tification of the nonlinear subsystem.

Fig. 1. The identified Hammerstein system.

Contrary to authors mentioned above, we do not impose any
restriction on continuity of ϕ or its functional form. In con-
sequence, the estimation problem we face in this way is non-
parametric in its nature. A new algorithm for recovering the
transform characteristic of the nonlinear subsystem is presented,
namely

ψ̂(u) =

n−1∑
i=0

Yi+1K

(
u− Ui
h(n)

)
n−1∑
i=0

K

(
u− Ui
h(n)

) (1)

where K is a suitably selected kernel and {h(n)} is a sequence
of positive numbers. In this definition 0/0 is understood as zero.
From a computational viewpoint the algorithm is extremely sim-
ple essentially as compared to those proposed by the authors
cited above. It is shown that

ψ̂(u)→ αϕ(u) as n→∞

in probability, where α is unknown constant factor up to which
ϕ can be estimated, at all continuity points of ϕ. For ϕ having
two derivatives and h(n) selected as n−1/5, the convergence rate
equals

|ψ̂(u)− ϕ(u)| = O(n−2/5)

in probability.

II. Identification Problem

For the first subsystem in Fig. 1 with input Un and output
Wn,

Wn = ϕ(Un) + ξn, (2)

n = 0,±1, · · · , where ϕ is a Borel measurable function, Un is
an input random variable, whereas ξn is a random disturbance.
{Un} is a sequence of independent and identically distributed
random variables having a density f . Additionally, let Un’s be
distributed symmetrically, i.e., f(u) = f(−u) and let variance
of Un be finite. The unknown function ϕ is odd, i.e., ϕ(u) =
−ϕ(−u), and moreover

|ϕ(u)| ≤ c1 + c2|u|, (3)

where c1, c2 are positive constants.
It is clear that the class of all Borel functions satisfying the

above restriction cannot be parameterized, and thus, the prob-
lem of estimating ϕ is nonparametric. Let us, moreover, observe
that the above conditions imply that {Wn} is a sequence of
independent and identically distributed random variables with
EWn = 0 and EW 2

n <∞.
The second subsystem of an unknown order is asymptotically

stable and

Yn =

∞∑
j=0

kjWn−j + ηn, (4)
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n = 0,±1, · · · , where {kn;n = 0, 1, · · · } is the unknown impulse
response function, and where k0 is assumed to be zero and k1 6=
0. Since the dynamic subsystem is asymptotically stable, i.e.,∑∞
j=0 |kj | <∞, then clearly

∑∞
j=0 k

2
j <∞. By this and EW 2

n <
∞ we observe that Yn is a random variable [1, p. 377] and
moreover {Yn} is strictly stationary random process (see [15, p.
143]).

The problem is to recover both ϕ and {kn} from observa-
tions (Ui, Yi), i = 1, 2, · · · , of input and output of the whole
system. Since Wn’s are not measured, we can estimate both ϕ
and {kn} only within to some unknown factors, i.e., we can esti-
mate αϕ(u) and βkn, n = 1, 2, · · · , where α and β are unknown
constants.

The problem of recovering the impulse response of the dy-
namical subsystem is not difficult since {Un} is stationary white
noise. For m ≥ 1, clearly

E{Yn+mUn} = βkm, (5)

where β = E{Uϕ(U)}. This suggests the following estimate of
βkm:

ρ̂m = n−1
n−m∑
i=1

UiYi+m

for m = 1, 2, · · · , n− 1.
Since {Yn} is also an ergodic random process (see [5, p. 461])

it is subject to laws of large numbers [5, p. 465] and

ρ̂m → βkm as n→∞

in probability.
Remark 1: We note that if the function ϕ is even, then β = 0.
For this case use instead (5) the fact that E{Yn+mG(Un)} =
βkm, β = R{G(U)ϕ(U)}, where G is any measurable function.
If ϕ is even we can choose G as, e.g., |u|, u2 and then clearly
β 6= 0.

III. Nonlinear Subsystem Identification

In order to present motivation for the proposed estimate, we
begin with the ARMA model of the dynamical subsystem:

Vn + a1Vn−1 + · · ·+ asVn−s = b1Wn−1 + · · ·+ bsWn−s, (6)

Yn = Vn + ηn, (7)

where s is the unknown order of the system and Vn is the noise-
free output. By the fact that EWn = 0 and (6), (7), it follows
that EYn = 0. It is now clear that E{Yn|Wn−1} = αWn−1 and
by stationarity

E{Yn|Un−1 = u} = E{Y1|U0 = u} = αϕ(u)

where α = b1 − a1 is assumed to be not equal to zero. Recover-
ing ϕ(u) is thus equivalent to estimating the nonlinear regression
E{Y1|U0 = u} from dependant pairs (U0, Y1), (U1, Y2), · · · . In
order to estimate it we apply (1) referred to as the nonpara-
metric kernel regression estimate. This estimate has been in-
troduced independently by Watson [19] and Nadaraya [13] and
than has been studied by a number of authors (see, e.g., Rosen-
blatt [16], Greblicki and Krzyzak [8], and more recent works
of Devroye [4], Krzyzak and Pawlak [12] as well as Greblicki,
Krzyzak and Pawlak [9]). All these authors assumed that pairs
(Un, Yn+1)’s are independent, whereas this note deals with de-
pendent observations.

On the bounded nonnegative Borel kernel we impose the fol-
lowing restrictions: ∫

K(u)du <∞, (8)

|u|K(u)→ 0 as |u| → ∞. (9)

Therefore, one can choose the following kernels:
(a) the window kernel

K(u) =

{
1/2, for |u| ≤ 1
0, otherwise

(b) the quadratic kernel

K(u) =

{
3(1− u2)/4, for |u| ≤ 1

0, otherwise

(c) the Gauss kernel (2π)−1/2e−u
2/2.

In the analysis of the estimate it will be convenient to use the
state-space representation of the dynamical subsystem:

Xn+1 = AXn + bWn (10)

Yn = cTXn + ηn,

where Xn is the s-dimensional random vector, A is unknown but
asymptotically stable matrix, b and c are unknown s-vectors. A,
b, and c can be easily calculated from (6) and (7).

We observe that {Xn} is also strictly stationary random pro-
cess [15, p. 797]. By this, (2) and (10) we have E{Y1|U0 = u} =
αϕ(u), where α = cT b.

IV. Consistency of the Estimate

In this section conditions under which estimate (1) converges
to αϕ(u) are given. For convenience, we denote αϕ(u) = m(u),
g(u) = m(u)f(u), where f is the input density and we shall
write h for h(n). In the sequel, C(f1, · · · , fm) denotes a set of
all points at which all f1, · · · , fm are continuous.
Theorem 1: Let the kernel K satisfy (8) and (9). Let

h(n)→ 0 as n→∞ (11)

and

nh(n)→∞ as n→∞. (12)

Then

ψ̂(u)→ αϕ(u) as n→∞ in probability (13)

at all points u ∈ C(f, ϕ) at which f(u) > 0.
Remark 2: If it is known that ϕ(u0) = ϕ0 for some point

u0 ∈ C(ϕ) then, by (13), ϕ̂(u) = ϕ0ψ̂(u)/ψ̂(u0) is a consistent
estimate of ϕ(u).

Next n−1∑n−1
i=0 Uiϕ̂(Ui) may be used as an estimate of β in

(5).
While proving Theorem 1 we shall need a lemma whose proof

is in the Appendix.
Lemma: For i 6= j,

cov

[
Xi+1K

(
u− Ui
h

)
, Xj+1K

(
u− Uj
h

)]
= A|i−j|Qh(u),

where

Qh(u) = APATE2

{
K

(
u− U0

h

)}
+ bbTE

{
ϕ2(U0)K

(
u− U0

h

)}
E

{
K

(
u− U0

h

)}
and where

P = E
{
X0X

T
0

}
.
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Proof of Theorem 1: We begin with rewriting the estimate in
the following form:

ψ̂(u) = ĝ(u)/f̂(u),

where

ĝ(u) = (nh)−1
n−1∑
i=0

Yi+1Ki

and

f̂(u) = (nh)−1
n−1∑
i=0

Ki.

Her and in further parts of this noteKi stands forK((u−Ui)/h).
Clearly,

Eĝ(u) = h−1

∫
K
(u− v

h

)
m(v)f(v)dv.

By this and [20, Theorem 9.9m p. 150],

Eĝ(u)→ g(u)

∫
K(v)dv as h→ 0 (14)

for u ∈ C(g).
In turn, by virtue of the lemma,

var

n−1∑
i=0

Yi+1Ki

= n var(Y1K0) +

n−1∑
i=0
i 6=j

n−1∑
j=0

cov (Yi+1Ki, Yj+1Kj)

= n var(Y1K0) +

n−1∑
i=0
i 6=j

n−1∑
j=0

cTA|i−j|cQh(u)

= n var(Y1K0) + 2cT [An(I −A)−1 − nI]cQh(u)

= n var(Y1K0) +Hn(u), say.

By the definition of Qh(u) and (14)

Qh(u)/h2 → APAT f2(u) + bbTϕ2(u)f2(u)

as h→ 0 for u ∈ C(f, ϕ). By this and the fact that An → 0 as
n→∞,

Hn(u)/(nh(n))2 → 0 as n→∞

for u ∈ C(f, ϕ), provided that (11) and (12) hold. Therefore,

lim
n→∞

nh var ĝ(u) = lim
n→∞

h−1 var(Y1K0).

Obviously,

h−1 var(Y1K0) ≤ kh−1E{φ(U0)K0},

where k = supK(u) and φ(U0) = E{Y 2
1 |U0}. Using (6) and (7)

one can easily get

φ(u) = c3ϕ
2(u) + c4ϕ(u) + c5.

By this and (14)

lim sup
n→∞

h−1 var(Y1K0) is finite

for u ∈ C(f, ϕ). By this and (14)

ĝ(u)→ g(u)

∫
K(v)dv as n→∞

in probability for u ∈ C(f, ϕ).
Since using similar arguments one can easily show that

f̂(u)→ f(u)

∫
K(v)dv as n→∞

in probability for u ∈ C(f, ϕ), the theorem has been proved.
In [20, p. 152] we find that, under additional assumptions on

K, (14) holds also for almost all points u ∈ R, R is the real
line. Thus, (13) holds at almost all u ∈ R for which f(u) > 0.
Proceeding as in Greblicki, Krzyzak and Pawlak [9] and using
the lemma one can verify that (13) takes place for almost all (µ)
u ∈ R, where µ is the probability measure of Un’s. The measure
has not to be absolutely continuous and, consequently, cannot
posses the density. All the kernels given in (a)–(c) satisfy their
additional conditions on K.

V. The Rate of the Convergence

Imposing some regularity conditions on the transform charac-
teristic of the nonlinear subsystem and on the input density f ,
we show how to select {h(n)} and give the rate of convergence.

Writing an ∼ bn we mean that an/bn has a nonzero limit as
n → ∞. For a sequence {θn} of random variables, θn = O(an)
in probability says that λnθn/an → 0 as n→∞ in probability
for any number sequence {λn} convergent to zero..
Theorem 2: Let both ϕ and f have bounded derivatives up to
the second order in some neighborhood of u ∈ R. Let the
bounded Borel kernel satisfy (8) and (9) and let∫

vK(v)dv = 0, (16)

∫
v2K(v)dv <∞. (17)

If
h(n) ∼ n−1/5, (18)

then
|ψ̂(u)− αϕ(u)| = O(n−2/5)

in probability.
Remark 3: Estimation accuracy is very sensitive to selection of
parameter h. In general, the optimal choice of h depends on the
unknown input density, the nonlinear transformation ϕ, as well
the transfer function of the dynamical subsystem. For large
n, the optimal h becomes, however, independent of the last
factor. For independent observations Hall [11] showed that the
asymptotically optimal h is of order n−1/5. In the light of this,
it seems that h given in (18) is also asymptotically optimal. At
last we would like to mention that the choice of the kernel is
much less critical

Proof of Theorem 2: Without any loss of generality we assume
that

∫
K(v)dv = 1. Let ĝ(u) and f̂(u) have the same meaning

as in the proof of Theorem 1. Obviously

Eĝ(u) = α

∫
K(v)ϕ(u− hv)f(u− hv)dv.

Expanding both ϕ and f in the Taylor series and using (16),
(17), we get

|Eĝ(u)− αϕ(u)f(u)| = O(h2).

From this, (16) and (18), it follows that

E(ĝ(u)− αϕ(u)f(u))2 = O(n−4/5).
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i.e., |ĝ(u)− αϕ(u)f(u)| = O(n−2/5) in probability.
In the same way one can verify that

|f̂(u)− f(u)| = O(n−2/5)

in probability.
Observing∣∣∣∣∣ ĝ(u)

f̂(u)
− αϕ(u)

∣∣∣∣∣ ≤
∣∣∣∣∣ ĝ(u)− αϕ(u)f(u)

f̂(u)

∣∣∣∣∣+

∣∣∣∣∣ ĝ(u)(f̂(u)− f(u))

f̂(u)f(u)

∣∣∣∣∣
we complete the proof.

VI. Final Remarks

We have assumed that the transfer characteristic of the non-
linear subsystem is odd and the input distribution is symmet-
rical. One can easily verify that if these conditions are not
satisfied,

E{Y1|U0 = u} = αϕ(u) + δ,

where α and δ are some fixed but unknown constants.
Now δ can be estimated if it is known that, e.g., ϕ(u1) = ϕ1,

where u1 ∈ C(ϕ). Then one can take ψ̂(u)− ψ̂(u1) +αϕ(u1) as
an estimate of αϕ(u). Consequently, by Remark 2, if we know
the values of ϕ in two points, what is often the case, we can
estimate the constants α and δ and finally ϕ(u). We observe
that condition (3) may be relaxed to |ϕ(u)| ≤ c1 + c2|u|τ , τ > 0.
Then in order to have EW 2

n <∞ (what is necessary on existence
of the random variable Yn) we assume E|U |2τ <∞. Moreover,
if the density of U is known we may assumed the most general∫
ϕ2(u)f(u)du <∞.

Appendix

Proof of the Lemma

For simplicity of notation, let ϕi denote ϕ(Ui). Since EX0 =
0,

E{Xi+1X
T
1 KiK0}

= E{[Ai+1X0 + (Aibϕ0 + · · ·+ bϕi)](X
T
0 A

T + bTϕ0)KiK0}

= Ai+1PATEK2
0 + E{(Aibϕ0 + · · ·+ bϕi)b

Tϕ0KiK0}

= Ai+1PATEK2
0 +AibbTE{ϕ2

0K0}EK0 + bbTE2{ϕ0K0}.

We used here the following equality:

(Ai−2b+ · · ·+Ab+ b)Eϕ0 = (I −Ai−1)EX0.

Now one can easily get the desired assertion.
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