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A continuous-time Hammerstein system is identified. The characteristic of its nonlinear
subsystem and the impulse response of the dynamic parts are estimated from observations
taken at input and output of the whole system. All algorithms are of the on-line type.
Their convergence is shown. Results of simulation examples are also presented.
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1. Introduction

The history of composite nonlinear system identification
seems to begin with Narendra and Gallman (1966)
in which an iterative method for the identification of
Hammerstein systems was presented. Such discrete-
time systems have been the object of many studies,
(Chang and Luus 1971, Haist et al. 1973, Thathachar
and Ramaswamy 1973, Kaminskas 1975, Gallman 1976,
Billings and Fakhouri 1977, 1978, 1979, 1982). The
1990’s brought a new wave of papers (e.g., Lang 1993,
1994, 1997, Liao and Sethares 1995, Al-Duwaish and
Karim 1997, Al-Duwaish et al. 1997, Giri et al
2001). In all of them, the characteristic of the nonlinear
subsystem is usually continuous of a polynomial form.
In terms of mathematical statistics it means that, the
a priori information about the system is parametric.
When the characteristic is not a polynomial, e.g., has
a discontinuity, the behavior of their algorithms is
uncertain.

To overcome that drawback, Greblicki and Pawlak
(1986, 1989a, b) have applied the nonparametric ap-
proach. They have proposed kernel algorithms which
have then been studied by Krzyzak (1990, 1992), as
well as Krzyzak and Partyka (1993). A class of kernel
algorithms applying order statistics has been examined
in Greblicki and Pawlak (1994) and Greblicki (1996).
Those based on the idea of orthogonal expansions have
been investigated in Greblicki (1989), Krzyzak (1989),

Greblicki and Pawlak (1991, 1994b), as well as Pawlak
(1991). In particular, wavelets expansions have been used
by Pawlak and Hasiewicz (1998), as well as Hasiewicz
(1999, 2001). In turn, Lang (1993, 1994, 1997) has
proposed a polynomial method. In all those works, the
unknown nonlinear characteristic belongs to a very wide
class of admissible functions. Usually the class consists
of all functions bounded by a first degree polynomial. No
restriction has been imposed on their functional form, the
characteristic can be, e.g., continuous or not.

Apart from only Billings and Fakhouri (1978, 1979),
all papers mentioned above deal with discrete-time
Hammerstein systems.  Recently, however, Greblicki
(2000) has identified continuous-time ones. He proposed
a nonparametric kernel algorithm of an off-line type
to recover the nonlinear characteristic. ~Contrary to
Billings and Fakhouri (1978, 1979), the characteristic may
have any functional form, may be continuous or not, a
polynomial or not, etc. In this paper we develop the
idea and present two recursive kernel algorithms. Their
feature, which, in many circumstances, can be considered
as an advantage, is that they can be calculated on-line.
Moreover, we also examine a nonparametric estimate of
the impulse response of the dynamic subsystem and show
that its global error converges to zero. We also present
results of numeric simulation.

We also want to mention that Hammerstein systems
have already been used to describe processes in biology,
(Korenberg and Hunter 1986), chemistry, (Eskinat and
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Johnson 1991), (Patwardhan et al. 1998), and to model
magnetic hysteresis, (Hsu and Ngo 1997). This, together
with the fact that the a priori information is small,
makes the nonparametric approach and, in particular, our
recursive algorithms interesting not only for researchers
but engineers, too.

2. Statement of the Problem

The continuous-time Hammerstein system shown in figure
1 consists of two subsystems connected in a cascade.
A nonlinear memoryless part is followed by a linear
dynamic one. The first subsystem has a characteristic
m. Its input signal is a stationary white random process
{U(t);t € (—o0,00)} with zero mean and autocovariance
function ¢#8(.), where ¢ is the Dirac impulse. The
random variable U (¢) has an unknown probability density
f. We assume that m is a Borel measurable function
satisfying the following condition:

(1)

with some c¢j,c2 > 0. Owing to that m(U(t)) is
a random variable and {m(U(t));t € (—o0,00)} is a
stationary white random process with autocovariance
function denoted by var[m(U(t))]d(.). The fact that o
is finite together with (1) imply var[m(U(¢))] < oo.

Im(u)| < 1+ ealul

e K?)

) V()

Figure 1: The identified Hammerstein system

The impulse response of the linear subsystem is denoted
by k which means that

W(t) = /_ K(t — OV (E)de. (2)

We assume that

o0

/ E2(t)dt < oo. (3)
0

Owing to (3), and the fact that varim(U(¢))] < oo,
output W(t) of the dynamic part is a random vari-
able. Obviously, {W(t);t € (—oc0,00)} is a stationary
correlated random process. Output of the dynamic
subsystem is disturbed by additive stationary zero mean

white random noise {Z(t);t € (—o0,00)}, i.e., a processes
with autocovariance function 0%8(.). Therefore, Y (t) =
W(t) + Z(t), where Y (t) is output of the whole system.

We identify both subsystems, i.e., estimate the non-
linear characteristic m and the impulse response k from
observations {U(t),Y(t);t € [0,00)} taken at input
and output of the whole system. Since the signal
interconnecting the subsystems is not measured, both m
and k can be estimated up to some constants only.

To simplify further considerations and formulas, we
impose the following additional restrictions on the density
f of U(t) and the nonlinearity m:

(4)
(5)

Restriction (4) implies EU(t) = 0. In turn, this, and (5)
yield EV(t) = EW(t) = EY (t) = 0.

For the sake of simplicity, U and V, etc., denotes
random variables distributed like U(t) and V (¢), etc. For
convenience, for a fixed positive A, we denote o = k(\).
Moreover, 8 = E{Um(U)}.

f is an even function,

m is an odd function.

3. Nonlinear subsystem identification

3.1. Algorithms

To introduce the algorithm identifying the nonlinear
subsystem, we need the following lemma which can be
found in (Greblicki 2000):

Lemma 1 In the system,
E{Y(t+ MU () = u} = am(u).

Therefore, to recover am(u) we estimate the regression
E{Y (t+X)|U(t) = u} with the following algorithms:

Aust) = [0 95" (;25)(5)) .
t u — ’
| g™ ( h<s>(§>>d’5

A & owil
S ()

where, K and h are suitably selected kernel and band-
width functions, respectively.

(6)

and

(7)
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Depending on the estimate, the positive Borel measur-
able function h satisfies some of the following restrictions:

h(t) — 0 as t — oo, (8)

1 ("1
/ (T)dTﬂOastHoo (9)
/ h(r)dr = (10)

0

The Borel measurable kernel K is selected to meet the
following ones:

s K@) <o, )
/jc | K (v)| dv < o0, (12)
vK(v) — 0 as |v] — oo. (13)

Observe that for h(t) = ct~7, with any positive ¢, (8)
and (9) hold for 0 < v < 1. Similarly, (8) and (10) hold
also for 0 < v < 1. As the kernel, one can select, e.g., a
rectangular function equal 1 or zero according to |u| does
not Zexceed or is greater than 1. Other examples are e~ "I,
e %, or 1/(1+u?).

Algorithms (6) and (7) can be calculated recursively.

Denoting
/“+§ o (“he )

flut) = t/oh<15>K(u U)(£)>d§

h(¢
and observing that fi(u;t) = §(t;u)/f(u;t), we can write

P | o )|

with §(u;0) = f(u;0) = 0. In a similar way, we denote
. 1 ! u— U(g))
ju) = ———— [ Y(A K|——)d
9(t;u) Ik h(g)dg/o A+8) ( hE) £

observe [i(u;t) = (t )/ f(u;t) and write

j
=0 v e(5)
(16)

dz : 1 u—Ul(t)
G0 = =) | - g (5P| an
with ~(t /fo €)d¢ and §(u;0) = f(u;0) = 0.

Both algorthms can be regarded as recursive versions
of the following off-line one:

/”*5 ()
[Ca)s
0 h(t)
examined in (Greblicki 2000).
The idea standing behind our algorithms can be

explained in the following way. From procedure (14) we
expect that

(18)

R 1 u—U(t)
E i)=Y A+t)— K| ————=
sty oo r(55 ) o
as t—o0
which is equivalent to

a0 () s

as t — 0.

— 0

'Eé(u; t)—

Owing to (11)—(13) and (8),

1 u—U(t)
g (=Y
h(t) < h(t) )
gets close to d(u — U(t)) [ K(v)dv as t — oo, where §(.)
is the Dirac unpulse Thus

it o () s
)/O;K(v)dv as £ — 00

— m(u)f(u

u) [ K(v dv as
t — oo. For similar reasons, Ef(u t — f fK

as t — oo. In the light of this, we can expect that (6) ie.
g(u;t)/f(u;t), converges to am(u). The reasoning holds
also for (7).

and, consequently, Eg(u;t) — am(u

3.2. Convergence

Our next theorem establishes convergence of the algo-
rithm recovering the nonlinearity.
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Theorem 1 Let the kernel K satisfy (11)—(13). If h The last equality is a consequence of Lemma 6 in

satisfy (8) and (9), then Appendix. Thus
f(u;t) — am(u) ast — oo in probability (19) 1t o1
, ) , var[g(u; t)] = O (2/ dT) .
at every point u at which both m and f are continuous, t2 Jo h(T)
and f(u) >0
Finally,

Proof Let u be a point at which both m and f are
continuous. From Lemma 1, we get

Fil) = A F {Y(A)Ml&)K (u h(g)(0)> } “

ot oo ()

Since (8) holds and

g(u;t) — am(u)f(u)/ K(v)dv as t — oo in probability.

Since, using similar arguments, one can verify that

f(uvt)_’f(u)/_oo K(v)dv as t — oo

E {m(U)K (u ;L U) } i.n probability at the point, the theorem has been verified.
K(v)dvas h — 0 20
- m(U)f(U)[m (v)dv as h = 0, (20) Theorem 2 Let the kernel K satisfy (11)-(13). If h
we have satisfies (8) and (10), then
Eg(u;t) — af (u) / K(v)dv as t — oo. f(u;t) — am(u) as t — oo in probability

Since Y (£) = W (t) + Z(t) with W (¢) as in (2), we have at every point u at which both m and f are continuous,

var[§(u;t)] = Ri(u;t) + Ro(u;t), where and f(u) >0
// cov[ (A + g)h( )K ( h(g)(£)> Proof Using Lemma 1, we get
WA +7) — — U] gean, Bglu;t) t
h(n) ( h(n) } _ foth(lT)dT/o E {Y(/\)K <U;L(Z)(O)> } dc

// cov[ (A+¢) (15) (u;(g)@)), :al/OtE{m(U)KC%])}dC-

Z(A+n) 1)K(“;U< )ﬂdﬁdn. Jo h(r)dr

h(n (1) Since (20) holds and (10) is satisfied,
By virtue of Lemma 4 in Appendix,
1/t 1 Eg(u;t) — af(u) / K(v)dv as t — oc.
N=0(= [ ——dr).
w1 =0 (5 [ )

Our analysis of the var[g(u;t)] is similar to that in

Since processes Z(.) and U(.) are mutually independent, ' )
Theorem 1. The only difference is that we use Lemma

Ro(ujt) = o2 l /t var 1 K u—U(n) d 5 rather than Lemma 4. n
2 72/, h(n) h(n) Arguing as in Greblicki (2000), one can verify that
,1 [t 1 , (u—"U(n) for m and f having three derivatives fi(u;t) — am(u) =
< UZE/ G EAET =) ¢ d O(t=%/%) as t — oo in probability provided that h(t) ~

t 0 h (77) h(n) _1/5 .
. t The kernel K is such that [ K(v)dv = 0 and
- U%%O(l)/ %dr. JvK(v)dv = 0. Similar result holds for fi(u;t). Details

t o h(7) are left for the reader.
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3.8. Global error

We now assume that m and f are continuous in the whole
real line. In addition, U(.) as well as disturbance Z(.)
are all bounded, i.e., that, for all ¢, |[U(¢t)] < ¢; and
|Z(t)] < co with some ¢, ¢o. From this and (1), it
follows that |am(u)| < ¢4, for all u and some ¢4. Owing
to that |Y(¢)] < c¢5 for some ¢5. Thus, |a(u;t)| < c
for all w and ¢t. Therefore from (19), it follows that
E (i(u;t) —am(u))®> — 0 as t — oo, all u. Hence,
applying Lebesgue dominated convergence theorem, we
get

o0
/ E (i(u; t) — am(u))? f(u)du — 0 as t — oo.
For similar reasons

/jo E (i(u;t) — am(u))® f(u)du — 0 as t — co.

3.4. Sampled data

We shall now show how to recover m(u) from sampled
input and output signals, i.e., from pairs

(U(A),Y(A)), (UQA),Y(24)), ... (U(nA), ¥ (nA)),

where A > 0. As our on-line algorithms recovering
k(A)m(u), we now take

n

S ((i+1A) K (u_lzf(A))

fin(u) = n : (21)
1 u—U®GA)
K=
Sk ()
and
Zn:Y((i +1DAK <“g(ZA)>
fin () = 52 ooy @
;Y((i +1)A)K (hi >

where {h,} is a sequence of positive numbers.
Denoting

i) = 23 ¥ (G + D)k ().

?

fulu) = j;_j,jK (=),

we notice that jin (1) = §n(u)/fp (1) and observe that the
following recursive formulas can be applied:

gn(u) = gn71<u)

O e R

L u—U(nA) )}

hn,

with Qoﬁu) = fo(u) = 0. One can also verify that fi,(u) =
gn(u)/fn (U;), Where

1

—Tn |:§n—1(u) ~Y((n+1)A)—K (

hy,

e

Falw)=Foaw) = 2| s - K ()

with Tn = hn/zzlzl hi> gO(u) = f~0(u> =0.
Proofs of the following theorems are left to the reader:

Theorem 3 Let the kernel K satisfy (11), (12), and

(13). If,
hn, — 0 as n — oo, (23)
|
— — — 0 asn — oo,
then

fin(u) = k(A)m(u) as n — oo in probability

at every point u at which both m and f are continuous,
and f(u) > 0.

Theorem 4 Let the kernel K satisfy (11), (12), and
(18). If, in addition to (23),

n
E hz = 00,
i=1

then
fin(u) — k(A)m(u) as n — oo in probability

at every point u at which both m and f are continuous,
and f(u) > 0.
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4. Dynamic subsystem identification

4.1. Pointwise properties

The basis for recovering the impulse response is the
following obvious equality

cov[Y (t +7),U(t)] = Bk(r).

Thus, as an estimate of Sk(7) we take

i = [ Yoroues e

which can be calculated in the following recursive way:

et = % li(r: ) —

dt
with &(7;0) = 0.

Y (r +¢)U(t)]

Theorem 5 Let E{U?*m?(U)} < co. Then
E(i(1;t) — BE(7))? — 0 as t — oo.

Proof Since E&(r;t) = Bk(7), it suffices to examine
var [#(7;t)] which, owing to (2), equals (1/t2)[Pi(;t) +
Py(7;t)] with

t
Py(1;t) = var {/ W(r + E)U(f)df]

/ / covW (7 + E)U(E), W (7 +m)U (n)]dédn,

Py(7;t) = var [/ Z(r + U (f)df]
//COV (T +U(E), Z(t +n)U(n)]dédn.

Since, EU = 0, by virtue of Lemma 3 in Appendix,

(s t>=/ / ol (7 + E)U(£), W (r + n)U ()] dédn
= k2(T)tvar [Um(U)] + o¥odt / h k*(€)d¢
0
+ B2 {Um(U)}
X /0 /0 k(T + & —n)k(r — & + n)dédn.

The double integral in the last term equals 2 fot k(T +
AMk(r — A)dX and is bounded in absolute value by

2 [0 k*(€)dE. Therefore, |Py(t)| < cit,some c; indepen-
dent of . Since

cov[Z(r +&U(E), Z( +n)U(n)] = a50%8(6 — 1),
we get Py(7;t) = o o%t. Finally, var[a(r;t)] = O(t™1)
which completes the proof. ]

4.2. Global error
Going through the proof of Theorem 5, we observe that

B((r5t) = Bk(7))* = (1+ K*(r))O(t™")

with O(.) independent of 7, which does not guarantee
that the global error E [°(#(7;t) — Bk(7))?dr is finite.
Nevertheless, for any bounded function w such that
JoS lw(T)|dr < oo, the weighted global error vanishes
with ¢ increasing to infinity, i.e.,

(25)

/0Oo E(i(1;t) — BE(1))*w(r)dr = O(t™1).

In particular, the convergence holds for w(r) equal e~ "

or k(7).
To avoid introducing a weighting function we can select
a function 7T'(.) and define

" o R(m3t), for T <T(t)
Fr(73t) = { 0, for 7 > T(t),

as a new, truncated in the time domain, estimate of
Bk(r). Owing to (25), its global error is equal or not
greater than

T(t) 0o
/ (Rp(T5t) — BE(T))2%dT + (2 / E*(r)dr
0 T(t)

< T/t + B2 / © 2 (ryar

T(t)

with some ¢ independent of ¢. Thus,
o0
/ E(kp(T;t) — Bk(T))*dT — 0 as t — oo
0

if limy oo T(t)/t = 0. Selecting T'(t) ~ Int and
observing that, due to stability of the dynamic subsystem,
f;?t) E2(€)d¢ = O(e=9T®) with some positive d, we
obtain

/OOO Blip(r:t) — Bk(7))2dr = O(t/ Int).

5. Simulation Example

5.1. Nonlinear subsystem

In the example, the dynamic subsystem has a transfer
function e/(s 4+ 1)2. Moreover, A = 1 and, consequently,
a = 1. We have applied the characteristic m shown in
figure 2.

Input signal is uniformly distributed in the interval
(—2.5,2.5) while Z,, has a Gaussian distribution with zero
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Figure 2: Characteristic m.

mean and variance 1. In both algorithms, the kernel
K(u) is a function equal 1 or zero for u in the interval
(—=1,1) or outside, respectively. As the function h, we
have selected 2.5¢t79%. The MISE has been defined as
Effg(,u(u) — m(u))?du, where u is (6), (7) or (18), and
calculated numerically. Results are shown in figure 3.
Differences between algorithms are very small.

5.2. Dynamic subsystem

Now, the nonlinear subsystem has the characteristic
m(u) = sign(u). The transfer function of the dynamic
part is e/(s + 1)? which means that its impulse response
equals k(t) = te~*~1). The input signal as well as
disturbance have a normal distribution with zero mean
and variance 1. For algorithm (24) the MISE defined
as B [ (&(7;t) — Bk(7))?k(7)dr has been calculated and
results presented in figure 4. It is not surprising that the
error vanishes rapidly with ¢ increasing to infinity.

6. Final remarks

On-line estimates presented here together with an off-
line one examined in Greblicki (2000) constitute a
set of nonparametric kernel algorithms recovering the
characteristic of the nonlinear part of the Hammerstein
system. The a priori information about the whole
system, i.e., about its both subsystems is extremely small,
in terms of statistics — nonparametric. The functional
form of a nonlinear characteristic is completely unknown.
It seems that this is often the case in real situations when
our knowledge about identified systems is small and very
much uncertain.

0
\ [ [ \ \
0 200 400 600 800 1000

Figure 3: MISE versus t; a) (6), b) (7), ¢) (18).

MISE
157
11015
5 4
t
0 5 10 15 20
Figure 4: MISE versus t; algorithm (24).
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Appendix

A.1. The System

Using arguments applied in the proof of Lemma 3
in Greblicki (2000) one can easily verify the following
lemmas:

Lemma 2 For any Borel functions ¢ and 1,

cov [W(§ + A)(U(€)), W(n + Ay (U(n))]
= cov [m(U)(U), m(U)p(U)] k*(N)3(€ — n)

+ / TR (0)doE {m2(U)} B {8060} 6(6 — 1)
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+E{m*(U }E{w(U PRk =&+ A)
+ E{o(U }E{m U}k()\kf n+A)
+ E{m(U)p(U )}fi{ﬂﬂ )¥(U)}
X k(€ =n+Nk(n—&+A).

Having the lemma we can prove our next one.

Lemma 3 Let W(t) be as in (2). For any Borel function

/ / oIV (€ + Ne (U (€)W (0 + Moy (U (n)
— k() / var [m(U) e (U)] de

+/0 K (0)doE {m (U)}/0 E{3(U)) de
+ k() / / E {m?(U)pe(U)} B {y(U)}

X k(n— &+ N)dédn
—Hc)\/t/tE{gogU}E{m?U@nU}
X k(€ — 1+ N)dédn
//E{m e (U)} E {m(U)g, (U)}

X k(& —n+ Nk(n — £+ A)ddn.

Lemma 4 Let W(t) be as in (2). Let K satisfy (11),
( 12). Then, at every point w at which m and f are

continuous,
(7).

// [covwg—i-)\

W+ N (u h(%m)] déd”‘

< (u, A)/O %df + Oa(u, V)t

with some finite 61 (u, \) and 03(u, \) independent of both
t and h.

Proof Let u be a point at which m and f are
continuous. The expression in the assertion equals

Z?Zl Si(u,t) with

=40 o ()

Solu,t) = = / TR 0)deE {[m(U)}

tq

“Jo w@” {h<1£>K2 (u7z<(s]>(§)>}d§’

A/t/%m Uhs (
<=ty

w0 )

Ul >} (n — € + N)dedn,
h(n)

K"

=0 [ [ e (g )
M 2<§;>£<“h{$§”)>}

() // { 55 ()]
<B{m ( o))

X k(& —n+ Nk(n— &+ N)dédn.

Denoting

p1(u) = sup - E‘K( hU)‘

r>0 b

pa() = sup - \mw)K (*%7) ‘

h>0
o (5]

we find pi(u), p2(u) and ps(uw) all finite, see (27).
Therefore we can write

p3(u) = sup hE
h>0

1Sy (u, t)| < k2(N)

S, e {rom (M)}

< Rk (\)pa(u) / e

a0 < [T ROE {20} 10 [

1S5 (u, 1) <R (A) M " k()] dnps(u)

X/ot E{mQ(U) T ‘K(u ;zé])(f)) ‘ } “

< k! [ ™ ()] dnpa (w)pa ),
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a1 <K [ 1K) dnpn )pat,
and
|S5 (u, t)|<p // |E(€ —n+ XNk(n— &+ N)|dédn
S@MA B (r)dr
The proof has been completed. [

Lemma 5 Let K satisfy (11), (12). Then, at every point
u at which m and f are continuous,

o)

oo (£5580)

< O4(u, ) /0 W)

with some finite 03(u, \) independent of both t and h.

t Ot cov |w(e-+ 0

A.2. General result
In Wheeden and Zygmund (1977: Theorems 9.9 and
9.13) we find the following result:

Lemma 6 Let f be a density function of a random
variable U. Let p be a Borel function such that E|lp(U)| <
0o. Let a Borel measurable kernel K satisfy (11)—(13).

Then aaaaaa
}ILE{@(U)K (“;U>} - u)/_ooooK(v)dv
(26)

as h — 0
at every point u at which both f and ¢ are continuous
and

1 -U
sup > 0—F |p(U)K “ < 00 (27)
h h h
at the same points.
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