
Recursive identi�cation of continuous-time Hammerstein
systems

W. Greblicki
Institute of Engineering Cybernetics, Wroc÷aw University of Technology
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1. Introduction

The history of composite nonlinear system identi�cation
seems to begin with Narendra and Gallman (1966)
in which an iterative method for the identi�cation of
Hammerstein systems was presented. Such discrete-
time systems have been the object of many studies,
(Chang and Luus 1971, Haist et al. 1973, Thathachar
and Ramaswamy 1973, Kaminskas 1975, Gallman 1976,
Billings and Fakhouri 1977, 1978, 1979, 1982). The
1990�s brought a new wave of papers (e.g., Lang 1993,
1994, 1997, Liao and Sethares 1995, Al-Duwaish and
Karim 1997, Al-Duwaish et al. 1997, Giri et al.
2001). In all of them, the characteristic of the nonlinear
subsystem is usually continuous of a polynomial form.
In terms of mathematical statistics it means that, the
a priori information about the system is parametric.
When the characteristic is not a polynomial, e.g., has
a discontinuity, the behavior of their algorithms is
uncertain.

To overcome that drawback, Greblicki and Pawlak
(1986, 1989a, b) have applied the nonparametric ap-
proach. They have proposed kernel algorithms which
have then been studied by Krzy·zak (1990, 1992), as
well as Krzy·zak and Partyka (1993). A class of kernel
algorithms applying order statistics has been examined
in Greblicki and Pawlak (1994) and Greblicki (1996).
Those based on the idea of orthogonal expansions have
been investigated in Greblicki (1989), Krzy·zak (1989),

Greblicki and Pawlak (1991, 1994b), as well as Pawlak
(1991). In particular, wavelets expansions have been used
by Pawlak and Hasiewicz (1998), as well as Hasiewicz
(1999, 2001). In turn, Lang (1993, 1994, 1997) has
proposed a polynomial method. In all those works, the
unknown nonlinear characteristic belongs to a very wide
class of admissible functions. Usually the class consists
of all functions bounded by a �rst degree polynomial. No
restriction has been imposed on their functional form, the
characteristic can be, e.g., continuous or not.

Apart from only Billings and Fakhouri (1978, 1979),
all papers mentioned above deal with discrete-time
Hammerstein systems. Recently, however, Greblicki
(2000) has identi�ed continuous-time ones. He proposed
a nonparametric kernel algorithm of an o¤-line type
to recover the nonlinear characteristic. Contrary to
Billings and Fakhouri (1978, 1979), the characteristic may
have any functional form, may be continuous or not, a
polynomial or not, etc. In this paper we develop the
idea and present two recursive kernel algorithms. Their
feature, which, in many circumstances, can be considered
as an advantage, is that they can be calculated on-line.
Moreover, we also examine a nonparametric estimate of
the impulse response of the dynamic subsystem and show
that its global error converges to zero. We also present
results of numeric simulation.

We also want to mention that Hammerstein systems
have already been used to describe processes in biology,
(Korenberg and Hunter 1986), chemistry, (Eskinat and
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Johnson 1991), (Patwardhan et al. 1998), and to model
magnetic hysteresis, (Hsu and Ngo 1997). This, together
with the fact that the a priori information is small,
makes the nonparametric approach and, in particular, our
recursive algorithms interesting not only for researchers
but engineers, too.

2. Statement of the Problem

The continuous-time Hammerstein system shown in �gure
1 consists of two subsystems connected in a cascade.
A nonlinear memoryless part is followed by a linear
dynamic one. The �rst subsystem has a characteristic
m. Its input signal is a stationary white random process
fU(t); t 2 (�1;1)g with zero mean and autocovariance
function �2U�(:), where � is the Dirac impulse. The
random variable U(t) has an unknown probability density
f . We assume that m is a Borel measurable function
satisfying the following condition:

jm(u)j � c1 + c2juj (1)

with some c1; c2 > 0. Owing to that m(U(t)) is
a random variable and fm(U(t)); t 2 (�1;1)g is a
stationary white random process with autocovariance
function denoted by var[m(U(t))]�(:). The fact that �2U
is �nite together with (1) imply var[m(U(t))] <1.

Figure 1: The identi�ed Hammerstein system

The impulse response of the linear subsystem is denoted
by k which means that

W (t) =

Z t

�1
k(t� �)V (�)d�: (2)

We assume that Z 1

0

k2(t)dt <1: (3)

Owing to (3), and the fact that var[m(U(t))] < 1,
output W (t) of the dynamic part is a random vari-
able. Obviously, fW (t); t 2 (�1;1)g is a stationary
correlated random process. Output of the dynamic
subsystem is disturbed by additive stationary zero mean

white random noise fZ(t); t 2 (�1;1)g, i.e., a processes
with autocovariance function �2Z�(:). Therefore, Y (t) =
W (t) + Z(t), where Y (t) is output of the whole system.
We identify both subsystems, i.e., estimate the non-

linear characteristic m and the impulse response k from
observations fU(t); Y (t); t 2 [0;1)g taken at input
and output of the whole system. Since the signal
interconnecting the subsystems is not measured, both m
and k can be estimated up to some constants only.
To simplify further considerations and formulas, we

impose the following additional restrictions on the density
f of U(t) and the nonlinearity m:

f is an even function, (4)

m is an odd function. (5)

Restriction (4) implies EU(t) = 0. In turn, this, and (5)
yield EV (t) = EW (t) = EY (t) = 0.
For the sake of simplicity, U and V , etc., denotes

random variables distributed like U(t) and V (t), etc. For
convenience, for a �xed positive �, we denote � = k(�).
Moreover, � = EfUm(U)g.

3. Nonlinear subsystem identi�cation

3.1. Algorithms

To introduce the algorithm identifying the nonlinear
subsystem, we need the following lemma which can be
found in (Greblicki 2000):

Lemma 1 In the system,

EfY (t+ �)jU(t) = ug = �m(u):

Therefore, to recover �m(u) we estimate the regression
E fY (t+ �) jU(t) = ug with the following algorithms:

�̂(u; t) =

Z t

0

Y (�+ �)
1

h(�)
K

�
u� U(�)
h(�)

�
d�Z t

0

1

h(�)
K

�
u� U(�)
h(�)

�
d�

; (6)

and

~�(u; t) =

Z t

0

Y (�+ �)K

�
u� U(�)
h(�)

�
d�Z t

0

K

�
u� U(�)
h(�)

�
d�

; (7)

where, K and h are suitably selected kernel and band-
width functions, respectively.
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Depending on the estimate, the positive Borel measur-
able function h satis�es some of the following restrictions:

h(t)! 0 as t!1; (8)

1

t2

Z t

0

1

h(�)
d� ! 0 as t!1; (9)Z 1

0

h(�)d� =1: (10)

The Borel measurable kernel K is selected to meet the
following ones:

sup
�1<v<1

jK(v)j <1; (11)

Z 1

�1
jK(v)j dv <1; (12)

vK(v)! 0 as jvj ! 1: (13)

Observe that for h(t) = ct� , with any positive c, (8)
and (9) hold for 0 <  < 1. Similarly, (8) and (10) hold
also for 0 <  < 1. As the kernel, one can select, e.g., a
rectangular function equal 1 or zero according to juj does
not exceed or is greater than 1. Other examples are e�juj,
e�u

2

, or 1=(1 + u2).
Algorithms (6) and (7) can be calculated recursively.

Denoting

ĝ(t;u) =
1

t

Z t

0

Y (�+ �)
1

h(�)
K

�
u� U(�)
h(�)

�
d�;

f̂(u; t) =
1

t

Z t

0

1

h(�)
K

�
u� U(�)
h(�)

�
d�

and observing that �̂(u; t) = ĝ(t;u)=f̂(u; t), we can write

d

dt
ĝ(u; t)=�1

t

�
ĝ(u; t)� Y (�+ t) 1

h(t)
K

�
u� U(t)
h(t)

��
;

(14)
d

dt
f̂(u; t) = �1

t

�
f̂(u; t)� 1

h(t)
K

�
u� U(t)
h(t)

��
; (15)

with ĝ(u; 0) = f̂(u; 0) = 0. In a similar way, we denote

~g(t;u) =
1R t

0
h(�)d�

Z t

0

Y (�+ �)K

�
u� U(�)
h(�)

�
d�;

~f(u; t) =
1R t

0
h(�)d�

Z t

0

K

�
u� U(�)
h(�)

�
d�

observe ~�(u; t) = ~g(t;u)= ~f(u; t) and write

d

dt
~g(u; t)=�(t)

�
~g(u; t)�Y (�+ t) 1

h(t)
K

�
u� U(t)
h(t)

��
;

(16)

d

dt
~f(u; t) = �(t)

�
~f(u; t)� 1

h(t)
K

�
u� U(t)
h(t)

��
; (17)

with (t) = h(t)=
R t
0
h(�)d� and ~g(u; 0) = ~f(u; 0) = 0.

Both algorthms can be regarded as recursive versions
of the following o¤-line one:

��(u; t) =

Z t

0

Y (�+ �)K

�
u� U(�)
h(t)

�
d�Z t

0

K

�
u� U(�)
h(t)

�
d�

(18)

examined in (Greblicki 2000).
The idea standing behind our algorithms can be

explained in the following way. From procedure (14) we
expect that

E

�
ĝ(u; t)�Y (�+ t) 1

h(t)
K

�
u� U(t)
h(t)

��
! 0

as t!1

which is equivalent to����Eĝ(u; t)� � 1

h(t)

Z 1

�1
m(u)K

�
u� v
h(t)

�
f(v)dv

����! 0

as t!1:

Owing to (11)�(13) and (8),

1

h(t)
K

�
u� U(t)
h(t)

�
gets close to �(u � U(t))

R
K(v)dv as t ! 1, where �(:)

is the Dirac impulse. Thus,

1

h(t)

Z 1

�1
m(u)K

�
u� v
h(t)

�
f(v)dv

! m(u)f(u)

Z 1

�1
K(v)dv as t!1

and, consequently, Eĝ(u; t) ! �m(u)f(u)
R
K(v)dv as

t ! 1. For similar reasons, Ef̂(u; t) ! f(u)
R
K(v)dv

as t!1. In the light of this, we can expect that (6), i.e.
ĝ(u; t)=f̂(u; t), converges to �m(u). The reasoning holds
also for (7).

3.2. Convergence

Our next theorem establishes convergence of the algo-
rithm recovering the nonlinearity.
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Theorem 1 Let the kernel K satisfy (11)�(13). If h
satisfy (8) and (9), then

�̂(u; t)! �m(u) as t!1 in probability (19)

at every point u at which both m and f are continuous,
and f(u) > 0.

Proof Let u be a point at which both m and f are
continuous. From Lemma 1, we get

Eĝ(u; t) =
1

t

Z t

0

E

�
Y (�)

1

h(�)
K

�
u� U(0)
h(�)

��
d�

= �
1

t

Z t

0

E

�
m(U)K

�
u� U
h(�)

��
d�:

Since (8) holds and

E

�
m(U)K

�
u� U
h

��
! m(u)f(u)

Z 1

�1
K(v)dv as h! 0; (20)

we have

Eĝ(u; t)! �f(u)m(u)

Z 1

�1
K(v)dv as t!1:

Since Y (t) =W (t)+Z(t) with W (t) as in (2), we have
var[ĝ(u; t)] = R1(u; t) +R2(u; t), where

R1(u; t)=
1

t2

Z t

0

Z t

0

cov

�
W (�+ �)

1

h(�)
K

�
u� U(�)
h(�)

�
;

W (�+ �)
1

h(�)
K

�
u� U(�)
h(�)

��
d�d�;

R2(u; t)=
1

t2

Z t

0

Z t

0

cov

�
Z(�+ �)

1

h(�)
K

�
u� U(�)
h(�)

�
;

Z(�+ �)
1

h(�)
K

�
u� U(�)
h(�)

��
d�d�:

By virtue of Lemma 4 in Appendix,

R1(u; t) = O

�
1

t2

Z t

0

1

h(�)
d�

�
:

Since processes Z(:) and U(:) are mutually independent,

R2(u; t) = �2Z
1

t2

Z t

0

var

�
1

h(�)
K

�
u� U(�)
h(�)

��
d�

� �2Z
1

t2

Z t

0

1

h2(�)
E

�
K2

�
u� U(�)
h(�)

��
d�

= �2Z
1

t2
O(1)

Z t

0

1

h(�)
d�:

The last equality is a consequence of Lemma 6 in
Appendix. Thus

var[ĝ(u; t)] = O

�
1

t2

Z t

0

1

h(�)
d�

�
:

Finally,

ĝ(u; t)! �m(u)f(u)

Z 1

�1
K(v)dv as t!1 in probability.

Since, using similar arguments, one can verify that

f̂(u; t)! f(u)

Z 1

�1
K(v)dv as t!1

in probability at the point, the theorem has been veri�ed.

Theorem 2 Let the kernel K satisfy (11)�(13). If h
satis�es (8) and (10), then

~�(u; t)! �m(u) as t!1 in probability

at every point u at which both m and f are continuous,
and f(u) > 0.

Proof Using Lemma 1, we get

E~g(u; t)

=
1R t

0
h(�)d�

Z t

0

E

�
Y (�)K

�
u� U(0)
h(�)

��
d�

= �
1R t

0
h(�)d�

Z t

0

E

�
m(U)K

�
u� U
h(�)

��
d�:

Since (20) holds and (10) is satis�ed,

E~g(u; t)! �f(u)m(u)

Z 1

�1
K(v)dv as t!1:

Our analysis of the var [~g(u; t)] is similar to that in
Theorem 1. The only di¤erence is that we use Lemma
5 rather than Lemma 4.
Arguing as in Greblicki (2000), one can verify that

for m and f having three derivatives �̂(u; t) � �m(u) =
O(t�2=5) as t ! 1 in probability provided that h(t) �
t�1=5. The kernel K is such that

R
K(v)dv = 0 andR

vK(v)dv = 0. Similar result holds for ~�(u; t). Details
are left for the reader.

printed in: International Journal of Systems Science, Vol. 33, No. 12, pp. 969�977, 2002



Recursive identification of continuous-time Hammerstein systems 5

3.3. Global error

We now assume thatm and f are continuous in the whole
real line. In addition, U(:) as well as disturbance Z(:)
are all bounded, i.e., that, for all t, jU(t)j � c1 and
jZ(t)j � c2 with some c1, c2. From this and (1), it
follows that j�m(u)j � c4, for all u and some c4. Owing
to that jY (t)j � c5 for some c5. Thus, j�̂(u; t)j � c6
for all u and t. Therefore from (19), it follows that
E (�̂(u; t)� �m(u))2 ! 0 as t ! 1, all u. Hence,
applying Lebesgue dominated convergence theorem, we
get Z 1

�1
E (�̂(u; t)� �m(u))2 f(u)du! 0 as t!1:

For similar reasonsZ 1

�1
E (~�(u; t)� �m(u))2 f(u)du! 0 as t!1:

3.4. Sampled data

We shall now show how to recover m(u) from sampled
input and output signals, i.e., from pairs

(U(�); Y (�)); (U(2�); Y (2�)); : : : ; (U(n�); Y (n�));

where � > 0. As our on-line algorithms recovering
k(�)m(u), we now take

�̂n(u) =

nX
i=1

Y ((i+ 1)�)
1

hi
K

�
u� U(i�)

hi

�
nX
i=1

1

hi
K

�
u� U(i�)

hi

� (21)

and

~�n(u) =

nX
i=1

Y ((i+ 1)�)K

�
u� U(i�)

hi

�
nX
i=1

Y ((i+ 1)�)K

�
u� U(i�)

hi

� ; (22)

where fhng is a sequence of positive numbers.
Denoting

ĝn(u) =
1

n

nX
i=1

Y ((i+ 1)�)
1

hi
K

�
u� U(i�)

hi

�
;

f̂n(u) =
1

n

nX
i=1

1

hi
K

�
u� U(i�)

hi

�
;

we notice that �̂n(u) = ĝn(u)=f̂n(u) and observe that the
following recursive formulas can be applied:

ĝn(u) = ĝn�1(u)

� 1
n

�
ĝn�1(u)� Y ((n+ 1)�)

1

hn
K

�
u� U(n�)

hn

��
;

f̂n(u) = f̂n�1(u)�
1

n

�
f̂n�1(u)�

1

hn
K

�
u� U(n�)

hn

��
with ĝ0(u) = f̂0(u) = 0. One can also verify that ~�n(u) =
~gn(u)= ~fn(u), where

~gn(u) = ~gn�1(u)

�n
�
~gn�1(u)� Y ((n+ 1)�)

1

hn
K

�
u� U(n�)

hn

��
;

~fn(u)= ~fn�1(u)� n
�
~fn�1(u)�

1

hn
K

�
u� U(n�)

hn

��
;

with n = hn=
Pn

i=1 hi, ~g0(u) = ~f0(u) = 0.
Proofs of the following theorems are left to the reader:

Theorem 3 Let the kernel K satisfy (11), (12), and
(13). If,

hn ! 0 as n!1; (23)

1

n2

nX
i=1

1

hi
! 0 as n!1;

then

�̂n(u)! k(�)m(u) as n!1 in probability

at every point u at which both m and f are continuous,
and f(u) > 0.

Theorem 4 Let the kernel K satisfy (11), (12), and
(13). If, in addition to (23),

nX
i=1

hi =1;

then

~�n(u)! k(�)m(u) as n!1 in probability

at every point u at which both m and f are continuous,
and f(u) > 0.
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4. Dynamic subsystem identi�cation

4.1. Pointwise properties

The basis for recovering the impulse response is the
following obvious equality

cov [Y (t+ �); U(t)] = �k(�):

Thus, as an estimate of �k(�) we take

�̂(� ; t) =
1

t

Z t

0

Y (� + �)U(�)d� (24)

which can be calculated in the following recursive way:

d

dt
�̂(� ; t) =

1

t
[�̂(� ; t)� Y (� + t)U(t)]

with �̂(� ; 0) � 0.

Theorem 5 Let EfU2m2(U)g <1. Then

E(�̂(� ; t)� �k(�))2 ! 0 as t!1:

Proof Since E�̂(� ; t) = �k(�), it su¢ ces to examine
var [�̂(� ; t)] which, owing to (2), equals (1=t2)[P1(� ; t) +
P2(� ; t)] with

P1(� ; t) = var

�Z t

0

W (� + �)U(�)d�

�
=

Z t

0

Z t

0

cov[W (� + �)U(�);W (� + �)U(�)]d�d�;

P2(� ; t) = var

�Z t

0

Z(� + �)U(�)d�

�
=

Z t

0

Z t

0

cov[Z(� + �)U(�); Z(� + �)U(�)]d�d�:

Since, EU = 0, by virtue of Lemma 3 in Appendix,

P1(� ; t)=

Z t

0

Z t

0

cov[W (� + �)U(�);W (� + �)U(�)]d�d�

= k2(�)t var [Um(U)] + �2V �
2
U t

Z 1

0

k2(�)d�

+ E2 fUm(U)g

�
Z t

0

Z t

0

k(� + � � �)k(� � � + �)d�d�:

The double integral in the last term equals 2
R t
0
k(� +

�)k(� � �)d� and is bounded in absolute value by
2
R1
0
k2(�)d�. Therefore, jP1(t)j � c1t;some c1 indepen-

dent of t. Since

cov[Z(� + �)U(�); Z(� + �)U(�)] = �2U�
2
Z�(� � �);

we get P2(� ; t) = �2U�
2
Zt. Finally, var[�̂(� ; t)] = O(t�1)

which completes the proof.

4.2. Global error

Going through the proof of Theorem 5, we observe that

E(�̂(� ; t)� �k(�))2 = (1 + k2(�))O(t�1) (25)

with O(:) independent of � , which does not guarantee
that the global error E

R1
0
(�̂(� ; t) � �k(�))2d� is �nite.

Nevertheless, for any bounded function w such thatR1
0
jw(�)jd� < 1, the weighted global error vanishes

with t increasing to in�nity, i.e.,Z 1

0

E(�̂(� ; t)� �k(�))2w(�)d� = O(t�1).

In particular, the convergence holds for w(�) equal e��

or k(�).
To avoid introducing a weighting function we can select

a function T (:) and de�ne

�̂T (� ; t) =

�
�̂(� ; t); for � � T (t)
0; for � > T (t);

as a new, truncated in the time domain, estimate of
�k(�). Owing to (25), its global error is equal or not
greater thanZ T (t)

0

(�̂T (� ; t)� �k(�))2d� + �2
Z 1

T (t)

k2(�)d�

� cT (t)=t+ �2
Z 1

T (t)

k2(�)d�

with some c independent of t. Thus,Z 1

0

E(�̂T (� ; t)� �k(�))2d� ! 0 as t!1

if limt!1 T (t)=t = 0. Selecting T (t) � ln t and
observing that, due to stability of the dynamic subsystem,R1
T (t)

k2(�)d� = O(e�dT (t)) with some positive d, we
obtain Z 1

0

E(�̂T (� ; t)� �k(�))2d� = O(t= ln t):

5. Simulation Example

5.1. Nonlinear subsystem

In the example, the dynamic subsystem has a transfer
function e=(s + 1)2. Moreover, � = 1 and, consequently,
� = 1. We have applied the characteristic m shown in
�gure 2.
Input signal is uniformly distributed in the interval

(�2:5; 2:5) while Zn has a Gaussian distribution with zero
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Figure 2: Characteristic m.

mean and variance 1. In both algorithms, the kernel
K(u) is a function equal 1 or zero for u in the interval
(�1; 1) or outside, respectively. As the function h, we
have selected 2:5t�0:5. The MISE has been de�ned as
E
R 2
�2(�(u) �m(u))2du, where � is (6), (7) or (18), and

calculated numerically. Results are shown in �gure 3.
Di¤erences between algorithms are very small.

5.2. Dynamic subsystem

Now, the nonlinear subsystem has the characteristic
m(u) = sign(u). The transfer function of the dynamic
part is e=(s+ 1)2 which means that its impulse response
equals k(t) = te�(t�1). The input signal as well as
disturbance have a normal distribution with zero mean
and variance 1. For algorithm (24) the MISE de�ned
as E

R1
0
(�̂(� ; t)��k(�))2k(�)d� has been calculated and

results presented in �gure 4. It is not surprising that the
error vanishes rapidly with t increasing to in�nity.

6. Final remarks

On-line estimates presented here together with an o¤-
line one examined in Greblicki (2000) constitute a
set of nonparametric kernel algorithms recovering the
characteristic of the nonlinear part of the Hammerstein
system. The a priori information about the whole
system, i.e., about its both subsystems is extremely small,
in terms of statistics � nonparametric. The functional
form of a nonlinear characteristic is completely unknown.
It seems that this is often the case in real situations when
our knowledge about identi�ed systems is small and very
much uncertain.

Figure 3: MISE versus t; a) (6), b) (7), c) (18).

Figure 4: MISE versus t; algorithm (24).
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Appendix

A.1. The System
Using arguments applied in the proof of Lemma 3

in Greblicki (2000) one can easily verify the following
lemma:

Lemma 2 For any Borel functions � and  ,

cov [W (� + �)�(U(�));W (� + �) (U(�))]

= cov [m(U)�(U);m(U) (U)] k2(�)�(� � �)

+

Z 1

0

k2(v)dvE
�
m2(U)

	
E f�(U) (U)g �(� � �)
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+ E
�
m2(U)�(U)

	
E f (U)g k(�)k(� � � + �)

+ E f�(U)gE
�
m2(U) (U)

	
k(�)k(� � � + �)

+ E fm(U)�(U)gE fm(U) (U)g
� k(� � � + �)k(� � � + �):
Having the lemma we can prove our next one.

Lemma 3 Let W (t) be as in (2). For any Borel function
't(:)Z t

0

Z t

0

cov[W (� + �)'�(U(�));W (� + �)'�(U(�))]d�d�

= k2(�)

Z t

0

var [m(U)'�(U)] d�

+

Z 1

0

k2(v)dvE
�
m2(U)

	Z t

0

E
�
'2�(U)

	
d�

+ k(�)

Z t

0

Z t

0

E
�
m2(U)'�(U)

	
E f'�(U)g

� k(� � � + �)d�d�

+ k(�)

Z t

0

Z t

0

E f'�(U)gE
�
m2(U)'�(U)

	
� k(� � � + �)d�d�

+

Z t

0

Z t

0

E fm(U)'�(U)gE fm(U)'�(U)g

� k(� � � + �)k(� � � + �)d�d�:
Lemma 4 Let W (t) be as in (2). Let K satisfy (11),
( 12). Then, at every point u at which m and f are
continuous,����Z t

0

Z t

0

�
covW (� + �)

1

h(�)
K

�
u� U(�)
h(�)

�
;

W (� + �)
1

h(�)
K

�
u� U(�)
h(�)

��
d�d�

����
� �1(u; �)

Z t

0

1

h(�)
d� + �2(u; �)t

with some �nite �1(u; �) and �2(u; �) independent of both
t and h.

Proof Let u be a point at which m and f are
continuous. The expression in the assertion equalsP5

i=1 Si(u; t) with

S1(u; t) = k2(�)

Z t

0

var

�
m(U)

1

h(�)
K

�
u� U(�)
h(�)

��
d�;

S2(u; t) =
1

t2

Z 1

0

k2(v)dvE
�
m2(U)

	
�
Z t

0

1

h(�)
E

�
1

h(�)
K2

�
u� U(�)
h(�)

��
d�;

S3(u; t)=k(�)

Z t

0

Z t

0

E

�
m2(U)

1

h(�)
K

�
u� U(�)
h(�)

��
� E

�
1

h(�)
K

�
u� U(�)
h(�)

��
k(� � � + �)d�d�;

S4(u; t) = k(�)

Z t

0

Z t

0

E

�
1

h(�)
K

�
u� U(�)
h(�)

��
� E

�
1

h(�)
m2(U)K

�
u� U(�)
h(�)

��
� k(� � � + �)d�d�;

S5(u; t) =

Z t

0

Z t

0

E

�
m(U)

1

h(�)
K

�
u� U(�)
h(�)

��
� E

�
m(U)

1

h(�)
K

�
u� U(�)
h(�)

��
� k(� � � + �)k(� � � + �)d�d�:

Denoting

�1(u) = sup
h>0

1

h
E

����K �u� Uh
����� ;

�2(u) = sup
h>0

1

h
E

����m(U)K �u� Uh
����� ;

and

�3(u) = sup
h>0

1

h
E

����m2(U)K

�
u� U
h

����� ;
we �nd �1(u), �2(u) and �3(u) all �nite, see (27).
Therefore we can write

jS1(u; t)j � k2(�)

�
Z t

0

1

h2(�)
E

�
m2(U)K2

�
u� U(�)
h(�)

��
d�

� �k2(�)�3(u)

Z t

0

1

h(�)
d�;

jS2(u; t)j � �

Z 1

0

k2(v)dvE
�
m2(U)

	
�1(u)

Z t

0

1

h(�)
d�;

jS3(u; t)j�jk(�)j
Z 1

0

jk(�)j d��3(u)

�
Z t

0

E

�
m2(U)

1

h(�)

����K�u� U(�)h(�)

������ d�
� jk(�)j

Z 1

0

jk(�)j d��1(u)�3(u)t;
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Recursive identification of continuous-time Hammerstein systems 9

jS4(u; t)j � jk(�)j
Z 1

0

jk(�)j d��1(u)�3(u)t;

and

jS5(u; t)j��25(u)
Z t

0

Z t

0

jk(� � � + �)k(� � � + �)j d�d�

� �22(u)

Z 1

0

k2(�)d�:

The proof has been completed.

Lemma 5 Let K satisfy (11), (12). Then, at every point
u at which m and f are continuous,����Z t

0

Z t

0

cov

�
W (� + �)K

�
u� U(�)
h(�)

�
;

W (� + �)K

�
u� U(�)
h(�)

��
d�d�

����
� �3(u; �)

Z t

0

h(�)d�

with some �nite �3(u; �) independent of both t and h.

A.2. General result
In Wheeden and Zygmund (1977: Theorems 9.9 and

9.13) we �nd the following result:

Lemma 6 Let f be a density function of a random
variable U . Let ' be a Borel function such that Ej'(U)j <
1. Let a Borel measurable kernel K satisfy (11)�(13).
Then aaaaaa

1

h
E

�
'(U)K

�
u� U
h

��
! '(u)f(u)

Z
�
11K(v)dv

as h! 0 (26)

at every point u at which both f and ' are continuous
and

sup
h
> 0

1

h
E

����'(U)K �u� Uh
����� <1 (27)

at the same points.
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